Improving Project Management with Risk Assessments Using Bayesian Estimation

Mark A. Powell
Stevens Institute of Technology
Futron Corporation

Introductions

- Your Speaker
- The Audience

Presentation Premise

- Projects More Likely to Succeed when Project Managers make Good Decisions
 - PM's have to make Hard Decisions (and take the heat)
 - Many Decisions have Very Little Data (e.g., Safety, Reliability, Research)
 - Why you get the Big Bucks!
- Decisions are Always Based on Some Assessment of the Risk of the Decision not Producing the Desired Outcome
- Better Risk Assessments produce Better Decisions, and Hence Improved Project Management

Decisions for Most Projects

- Most Usually made Qualitatively (ad hoc, gut feel, seat of the pants, shoot from the hip, best engineering judgment, etc.) – a mental integration process
- Sometimes made Semi-quantitatively
 - Have some data, perhaps Processed Statistically
 - Statistical Estimates Mentally Combined with Heuristics, Professional Opinions, Surrogate or Analog Data, Assumptions, and Prior Uncertainty about the Decision
 - Can be Better or Worse than Pure Qualitative Decisions
- Both are Difficult to Justify to Upper Management
- Outcomes of Decisions (Bad and Good) Often Second Guessed

Suppose ...

- You could Make a Decision without Making any Assumptions?
- You could Perform a Completely Quantitative Risk Assessment for Each Alternative?
- You could *Mathematically* Balance All Data, Professional Opinions, Prior Uncertainties, Surrogate or Analog Data, and Ancillary Information in that Quantitative Risk Assessment?

Would that Help with those Important Decisions?

Presentation Synopsis

- Introduction to Real World Decision Examples
- Discussion of Project Decision Concepts
- The Role of Risk Assessments in Project Decisions
- Bayesian Estimation for Risk Assessments
- Closure with Real World Examples

Three Real World Decision Examples

- US Coast Guard C130 Preventative Maintenance (PM) Schedule
- NASA Bioastronautics Spaceflight Bone Fracture Risk Assessment
- NASA Space Shuttle and International Space Station Debris Avoidance

US Coast Guard C130 PM

- New Flight Deck Cooling Turbine was Failing on Fleet of C130 Aircraft
 - Replacement Cost: \$30K
 - Failure Terminated Missions and Risked Loss of Crew and Aircraft
- Performed a Single Refurbishment on Opportunity Basis
 - Cost: \$500
 - 60 Refurbishments for a Single Replacement!
- Obvious Potential Cost Savings with PM

USCG PM Decision Dilemma

- Had only Five Failures at 463, 538, 1652, 1673, and 2462 flight hours
- Opportune PM at 96 hours no failure
- What PM Interval would Provide the Most Cost Savings?
- USCG was Paralyzed
 - Classical Statistical Assessment Unclear
 - Too Little Data
 - Wrong Answer could be Career Limiting
 - Failure to Use PM Increases Operating Costs

NASA Spaceflight Bone Fracture Risk

- In Human Spaceflight History, no Astronaut/Cosmonaut/etc has Broken a Bone during a Mission
 - Known that Microgravity Reduces Bone Mineral Density Similar to Osteoporosis
 - Unknown How a Bone Fracture would Compromise a Mission or How it would Heal
 - Risk Assessment Limited to Purely Qualitative Not Acceptable to NASA
- A Bone Fracture would be Very Serious during a Mars Mission
- Very Difficult to Verify Mitigation of the Risk with no Quantitative Measures of the Risk

NASA Debris Avoidance

- USSTRATCOM Tracks about 8,000 debris objects
 - Average Mass: 1,000 pounds
 - Typical Collision Velocity: 11.45 Km/s
 - Collision with Space Shuttle or ISS would be Catastrophic
- If Risk of Collision is Too High, Can Maneuver Shuttle or ISS to Avoid Debris
 - Causes Significant Operations Replanning and Costs
 - Seriously Compromises Microgravity Experiments
- Flight Rule Exists, Based on Single Estimate of Risk of Collision

Decision Concepts

- Elements of Every Decision
 - Alternatives
 - Consequences or Outcomes
 - Uncertainty
 - Experiments and Data
 - Decision Maker Risk Tolerance
- Every Decision: Based on Assessment of the Risk that the Alternative Selected will not Produce the Desired Consequences or Outcome
- Always want to Select the Alternative that you Believe has the lowest Risk of not Producing the Desired Outcome, i.e., has the best chance of Producing the Desired Outcome

What is Risk?

- Best and Most Generic Definition: an Uncertain Future Consequence
- The *Measure* for Risk: Probability that Future Consequences will be Realized
 - Probability that Average Cost Savings using a Y hour PM Interval for Cooling Turbine for C130 Fleet is \$X/hr
 - Probability that an Astronaut will Break a Bone during a Mars Mission
 - Probability of Loss of Shuttle or Station due to Debris Collision
- One Certainty: The Consequence is Uncertain until Realized or OBE (overcome by events)

The Key to Good Decisions

- Best Decisions Take into Account:
 - All Data, any and All Information on the Risk
 - Actual Event Data
 - Observations that an Event has not Happened by some time (censored data)
 - Events with Uncertainty as to when they Occurred (truncated data)
 - Expert Opinion, or Best Engineering Judgment
 - Surrogate or Analog Data (uncertain about applicability)
 - Prior Uncertainties about the Consequence or Outcome
- Proper Quantitative Balancing of All Relevant Information Produces the Best Risk Assessments
- This Enables the Best Alternative to be Selected

The Risk Assessment is Key

- Quantitative Statistical Processing of all Relevant Data and Information, Considering Prior Uncertainties about the Alternatives
- Tells you How Sure Risk is at or below Some Level for each Alternative
 - Nota Bene: Not the Level of Risk will always be unknown
 - The Probability that an Alternative's Risk of not Producing the Desired Outcome is at or below some Level
- The Alternative with the Highest Assurance that the Risk of not Producing the Desired Outcome is below some Acceptable Level is the One to Select
- This is Very Natural

There are Always Data

- Sometimes for a Decision, you have no actual (Event) Data
- Example: 977+ Human Spaceflights in History, no Bones Ever Broken
- But, 977+ Human Spaceflights without a Bone Fracture Tells you a Lot about the Risk of Breaking a Bone in Space

That's a lot of Data!

Those Usually Unused Data

- Recall we want to use every scrap of Information available to make the Best Possible Decision
 - Event Data (failures, USSTRATCOM tracking measurements)
 - Censored Data (opportune refurbishment time, 977+ no fracture flights)
 - Truncated Data (an event occurred, but not sure when)
 - Expert Opinion (heuristics are earned)
 - Surrogate or Analog Data (unsure about applicability to decision)
 - Prior Uncertainties about the Risk (if available)
- Only Event Data can be Used with Classical Statistical Procedures Taught in Engineering
- Decision Theory/Analysis uses Bayesian Estimation to enable use of all these Data sources in *Quantitative Risk* Assessments

Bayesian Estimation

- Allows Quantified Estimates of Risk Using
 - All Possible Sources of Data
 - All Prior Uncertainties
- Does not Produce Single Values (point estimates) for Risk, Produces Entire Distributions for Risk
 - Distributions Can be Integrated to tell you How Sure Risk is below some Acceptable Level for each Alternative
 - Ideal for Risk Assessment and Decisions
- Bayesian Estimation is the Risk Assessment Foundation for all Decision Theory and Analysis
 - Until Recently, limited applicability due to Math Complexity
 - New Numerical Techniques developed in mid 1990's Allow Full Bayesian Estimation for all Decisions for all Projects

The Bayesian Process

- Select the Aleatory Model Probability Distributions for Consequence or Outcome for Decision and any Uncertainties in Data (Expert Opinion, Surrogate Data)
 - Distribution Curves governed by Parameter Values
 - Our Uncertainty about the Consequences and Data *translates* to Uncertainty about these Parameter Values
- Develop the Likelihood Function: The Probability our data would be Obtained as a function of Aleatory Parameter Values – A Simple Probability Calculation
- Develop the *Prior* Uncertainty Distributions for the Parameter Values
- Multiply the Likelihood and the Prior
 - Produces the *Posterior* Distribution for the Parameter Values
 - Balances the Information in the Data and the Prior Uncertainty

The Bayesian Posterior

- A Balanced Reconciliation of all Data and Information Sources and any Prior Uncertainty
- A Joint Distribution of the Parameters of the Aleatory Models
 - Usually quite complex mathematically
 - Rarely Recognizable as any Known Probability Distribution
- Modern Monte Carlo Methods are Used to Numerically Transform and Integrate the Posterior - Quantitative Risk Assessments

The Bayesian Prior

- A Probability Distribution for Uncertainty about the Consequences before Obtaining or Processing any Data
 - Must be *Translated* into Probability Distributions for Parameters of Aleatory Models
 - This Math can be Quite Complex
- Recall my Claim about Avoiding All Assumptions?
 - Rather than Assuming Some Value to do the Math and Statistics, Can Use a Probability Distribution
 - If you cannot Find a Suitable Probability Distribution, You can Use a Reference Prior

The Reference Prior

- Presents a Model that Reflects Ignorance about the Consequence or Aleatory Model Parameters before Processing Data
- Provides a Realistic and Valid Worst Case Scenario
 - Most Assumptions are Conservative beyond this Worst Case Scenario
 - Realism for Reference Prior Provable Mathematically
 - Sets Reference Posterior
- Reference Priors eliminate need for Assumptions
- Virtually Eliminates Second Guessing for that alone Well Worth Using

An Aside

- Some Practitioners Believe when they Perform Bayesian Updating, that it is Bayesian Estimation
- Bayesian Updating is usually performed By Updating a Classical Statistics Point Estimate with New Data
- This Suffers the Same Problems and Limitations of All Classical Procedures
 - Assumptions are Usually Required
 - Lack of Knowledge of Believability of Point Estimate
- Be Sure Bayesian Updating is not Being Used for Estimates!

USCG C130 PM Decision

- Used Bayesian Estimation for 5 Failures and One Censored Datum (96 hour refurbishment) with Reference Priors
- In paper included on CD MAPINCOSE2002ArticleFinal.pdf
- USCG selected a PM interval and implemented for C130 Cooling Turbine based on these charts

NASA Spaceflight Bone Fracture Risk Decisions

- Used to Quantify Increase in Fracture Risk in Extending ISS Missions to 365 Days
- Bandaid Charts:
 - From 5th to 95th Percentiles with Median (Dark Line)
 - Density of Color reflects Probability Density
- Note in *Bandaids*:
 - Increase in Medians
 - Substantial Probability Density at Very Low Risk Levels
 - Little Probability Density at Higher Risk Levels

NASA Debris Avoidance

- Current Flight Rule Implementation Uses Single Point Estimate of Risk, Not Bayesian Estimation
- Dramatic Improvements Possible Using Bayesian Estimation and Reference Priors
 - Allows Decision Strategies
 - Protect Operations Maneuver only with High Assurance that Acceptable Risk of Collision is Exceeded
 - Protect Crew and Vehicle Maneuver with Low Assurance that Acceptable Risk of Collision Exceeded
 - Would Produce Fewer Avoidance Maneuvers, Increase Safety, and Save Significant Resources

Synopsis

- Bayesian Estimation Allows Full Use of all Data and Information for Decision Making without Assumptions
- With an Experienced Practitioner
 - Easier and Quicker than Classical Processes
 - Easy to Learn and become an Experience Practitioner, PM's Can Do at PC with Training
- For Important Decisions
 - Well Worth Hiring Experienced Practitioner
 - Well Worth Contracting Firms with Experienced Practioners

Resources

- For Training in Decision Making, Bayesian Estimation, and Risk Management, See webcampus.stevens.edu
 - Decision and Risk Analysis for Complex Systems
 - Probability and Statistics for Systems Engineers
- References, a book on Bayesian Estimation, relevant papers, and a Statistical Programming Tool are Provided on the CD